Focusing on the layout of the 5G mobile communication base station in the city center, we design a 5G city network slicing strategy for the three typical application scenarios with enhanced mobile broadband (eMBB), ultrareliable low-latency communications (URLLC), and massive machine type communications (mMTC). The strategy considers multiple important network performance indicators, including user guaranteed bandwidth, maximum bandwidth limit, QoS (quality of service), link delay tolerance, and slicing throughput. The slicing strategy can greatly increase the connections of base station clients and the utilization of network resources, and effectively reduce block radio and handover radio. The simulation experiments adopt the 5G base station dataset of a coastal city layout in Zhejiang province. Our tests show that the 5G network slicing strategy has certain advantages in network transmission performance in urban complex environment. The research can provide an effective reference for 5G infrastructure construction in other cities.
Loading....